Midterm 2 - Review - Problems

Peyam Ryan Tabrizian

Monday, April 4th, 2011

1 Derivatives

Problem 1

Find the derivatives of the following functions:
(a) $f(x)=\sqrt{\sin ^{-1}(x)}$
(b) $f(x)=x^{\ln (x)}$
(c) $f(x)=x \cosh (x)$
(d) $f(x)=\ln (\ln (\ln (\ln (x))))$
(e) y^{\prime} at $(2,1)$ if $x^{2}+2 x y-y^{2}+x=9$

Problem 2

Show that the sum of the x and y - intercepts of any tangent line to the curve $\sqrt{x}+\sqrt{y}=\sqrt{c}$ is equal to c.

2 L'Hopital's rule

Problem 3

Evaluate the following limits
(a) $\lim _{x \rightarrow \infty}\left(\frac{\pi}{2}-\tan ^{-1}(x)\right)^{x}$
(b) $\lim _{x \rightarrow 0} \frac{\sin (x)}{\sinh (x)+1}$
(c) $\lim _{x \rightarrow \infty} \frac{e^{x}-1-x}{x^{2}}$
(d) $\lim _{x \rightarrow 0^{+}}(\sin (x))^{x}$

3 Differential equations

Problem 4

Solve $y^{\prime}=-2 y$ with $y(3)=2$

4 Linear approximation

Problem 5

Use linear approximations (or differentials) to approximate $\sqrt[4]{1.2}$. Is this an over- or underestimate?

5 Mean Value Theorem

Problem 6

Show that $x^{5}-6 x+c$ has at most one solution in $[-1,1]$

Problem 7

Is there a function f with $f(0)=-1, f(2)=4$ and $f^{\prime}(x) \leq 2$ for all x ?

6 Related rates

Problem 8

If the surface area of a ball is decreasing at a rate of $1 \mathrm{~cm}^{2} / \mathrm{min}$, how fast the volume decreasing when $r=10 \mathrm{~cm}$

Problem 9

[HARD] The minute hand on a watch is 8 mm long and the hour hand is 4 mm long. How fast is the distance between the tips of the hand changing at 1 o' clock?

7 Optimization problems

Problem 10

A rectangular playground is to be fenced off and divided in half by another fence parallel to one side of the playground. The area of each half is $600 \mathrm{sq} . \mathrm{ft}$. Find the dimensions of the playground that will use the minimal amount of fencing.

Problem 11

[HARD] A cone-shaped drinking cup is made frm a circular piece of paper of radius R by cutting out a sector and joining the edges $C A$ and $C B$. Find the maximum capacity of such a cup (see picture below and the demonstration during the review session)

1A/Practice Exams/Drinking cup.png

8 Graphing

Problem 12

Graph $y=\frac{\sin (x)}{1+\cos (x)}$

